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1 The standard approach

The analysis of field transformations that is traditionally presented in textbooks
(e.g. Srednicki, “Quantum Field Theory”, Sec. 22) has two significant limitations.
(i) It only applies to field theories whose Lagrange density L(ϕ, ∂µϕ) is just
a function of the field ϕ and its first derivative ∂µϕ: the proof fails if higher
derivatives are present.
(ii) It cannot be applied to field theories that are regulated by formulating them on
a space-time lattice, since in those theories a derivative is discretized to something
like (ϕ(z + a)−ϕ(z − a))/2a, so the action is a function of the field values ϕ(x)
at lattice sites, and L(x) just depends on ϕ(x). In the continuum limit, where
the lattic spacing goes to zero, this is still true, and there is never any separate
dependence of L(x) on ∂µϕ.

Here we give a much more general analysis, applicable to any field theory,
although we assume the fields are scalars. We start by obtaining a general
expression relating the change in the Lagrange density under a field transformation
to the change in the action. This can then be used to derive Noether’s theorem,
and also, as described in Srednicki’s textbook, the Schwinger-Dyson equations and
the Ward-Takahashi identities.

The proof proceeds by manipulation of the functional integral over field
histories, and we will use integration by parts to move derivatives from one factor
to another, so we will assume that all our field configurations are “well-behaved”,
meaning that all fields go to zero sufficiently quickly at space-time infinity that
there are no boundary terms. Thus “well-behaved” field configurations f and g
obey

∫

f(x)∂µg(x) ddx = −

∫

(∂µf(x)) g(x) ddx (1)

2 Infinitesimal field transformations

Consider some infinitesimal transformation T of the fields, which may or may not
be a symmetry:

T : ϕ(x) → ϕ(x) + δǫ∆ϕ(x) (2)

The field ϕ(x) might be a single scalar field, or a vector ϕa(x) of fields. ∆ϕ is
not infinitesimal, it gives the “shape” of the field transformation. Examples might
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be ∆ϕ(x) = aµ∂µϕ(x) (translation by aµ) or ∆ϕa(x) = εabϕb(x) (rotating in the
internal space of two scalar fields). δǫ is the infinitesimal parameter that we will
assume to be very small, so we work to lowest non-trivial order in δǫ.

2.1 Change in the Lagrange density

The change in the Lagrange density can be broken into a part that is a total
derivative of a well-behaved vector field and a part that is not,

δL(x) =
(

∂µK
µ(x) + I(0)(x)

)

δǫ (3)

I(0) is defined by stipulating that it cannot be written as a total derivative, i.e. there
is no non-zero well-behaved vector field Eµ such that I(0)(x) = ∂µE

µ(x). If δL is
a total derivative then I(0)(x) = 0; if δL is not just a total derivative then I(0)(x)
is not uniquely defined (one can add divergences to I(0) and subtract them from
∂µK

µ) but it is definitely non-zero. The change in the action is

δS =

∫

δL(x) ddx . (4)

Now let’s think about symmetries. The definition of a symmetry
transformation is that δS = 0, and we claim that for a symmetry transformation
the Lagrange density changes by a total derivative, so I(0) = 0:

T is a symmetry

i.e. δS = 0
⇔

I(0)(x) = 0

δL(x) = ∂µK
µ(x) δǫ

(5)

How do we prove (5)? It is obvious that I(0) = 0 ⇒ δS = 0, since if I(0) = 0
then δL is a total derivative of a well-behaved vector function, which integrates to
zero. To show that δS = 0 ⇒ I(0) = 0 we have to show that if δL(x) integrates to
zero then it can be always written as a total derivative of a well-behaved vector
field. This actually follows from basic electrostatics: if we think of δL(x) as a
well-behaved charge distribution ρ(~x) with zero net charge then it can always be
written as a total derivative of a well-behaved vector field, since there is a electric
field ~E which obeys div ~E = ρ and drops off to zero at infinity so rapidly that
it yields no boundary terms on integration. This is true for electrostatics in any
number of dimensions. So (5) is proved.

2.2 Position-dependent modulation of the field transformation

The slick way to obtain the Noether current corresponding to a given symmetry
T is to gauge the transformation T , and find the current jµ that couples to the
gauge field. If the transformation is a symmetry then the current will be conserved.
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That’s fine if you already know about gauge fields. Here we give an elementary
derivation.

Generalize to a position-dependent transformation, by making δǫ a function of
position:

Tgauged : ϕ(x) → ϕ(x) + δǫ(x)∆ϕ(x) (6)

It may seem redundant to have x-dependence in ∆ϕ(x) and in δǫ(x), but it isn’t.
The x-dependence of ∆ϕ(x) is fixed by our choice of transformation T , but for a
given T , we can freely vary δǫ(x) to be any function of x. Even if T is a symmetry,
Tgauged will not be a symmetry, except in the special case where δǫ(x) is constant.

The change in the Lagrange density under Tgauged now includes additional terms
arising from the position dependence of δǫ. These are therefore derivatives of δǫ:

δL(x) =
(

I(0)(x) + ∂µK
µ(x)

)

δǫ(x) + Iν
(1)(x)∂νδǫ(x) + Iνρ

(2)(x)∂ν∂ρδǫ(x) + · · · (7)

We integrate over space-time to obtain the change in the action. We can then
use integration by parts to move all the derivatives off the δǫ and on to the I
coefficients, and obtain

δS =

∫

ddx δǫ(x)
(

I(0)(x) + ∂µK
µ(x)

)

− δǫ(x)∂µI
µ

(1)(x) + δǫ(x)∂µ∂νI
µν

(2)(x) + · · ·

=

∫

ddx δǫ(x)
(

I(0)(x) + ∂µj
µ(x)

)

(8)
where the Noether current is

jµ(x) = Kµ(x) − Iµ

(1)(x) + ∂νI
µν

(2)(x) + · · · (9)

and I(n)(x) are defined by (7). Our final step is to express (8) more compactly as
a functional derivative:

δS

δǫ(x)
= I(0)(x) + ∂µj

µ(x) (10)

which is analogous to Srednicki (22.7). (10) is a powerful general theorem that
underlies Noether’s theorem, the Schwinger-Dyson equations, and the Ward-
Takahashi identities. It subsumes the following special cases: (a) If the original
transformation T was a symmetry, then, by (5), I(0)(x) = 0. (b) If the field
configuration is a solution to the equation of motion then it is a stationary
point of the action under any infinitesimal change in the field configuration, so
δS/δǫ(x) = 0.
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2.3 Noether’s theorem

From (10) we see that if the original transformation T is a symmetry and the field
is a solution to the equation of motion, then the Noether current is conserved:

∂µj
µ = 0 (11)

That is Noether’s theorem. To explicitly obtain the Noether current you have to
do the position-dependent field transformation (6) on the Lagrange density and
obtain the change (7), then use (9) to obtain the current.
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